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SUMMARY

The current regulation of new pharmaceuticals is inefficient because it demands arbitrary amounts of information,
the type of information demanded is not relevant to decision-makers and the same standards of evidence are
applied across different technologies. Bayesian decision theory and an analysis of the value of both perfect and
sample information is used to consider the efficient regulation of new pharmaceuticals. This type of analysis can
be used to decide whether the evidence in an economic study provides ‘sufficient substantiation’ for an economic
claim, and assesses whether evidence can be regarded as ‘competent and reliable’. Copyright © 1999 John Wiley
& Sons, Ltd.

KEY WORDS — Bayesian decision theory; the value of information; statistical methods

INTRODUCTION

The regulation of new health care technologies is
founded on a classical or frequentist view of
probability where efficacy and safety must be
demonstrated in one or more clinical trials at a
level of significance and power established by
precedent. Until recently it appeared that the
United States Food and Drug Administration
(FDA) would apply a similar standard to all
comparative health economic claims, requiring
‘substantial evidence’ typically demonstrated ‘by
two adequate and well controlled clinical trials’
[1,2]. However the FDA Modernization Act [3]
amends the standard for health economic claims
to ‘competent and reliable scientific evidence’.
What constitutes competent and reliable evidence
is not yet clear, but Bayesian decision theory and

an analysis of the value of information can be
used to decide whether the evidence in an eco-
nomic study is ‘sufficient’ substantiation. Indeed
it can be used to establish an efficient regulatory
framework, based on an assessment of the value
of additional information.

ARBITRARY REGULATION

Current regulatory regimes can be described as
arbitrary for three reasons. First, the standard of
demonstrating efficacy or cost-effectiveness at ar-
bitrarily selected levels of significance (a) and
power (1−b) relies on a power calculation where
the optimal sample size is determined by a, b and
the difference in outcome that is deemed to be
worth detecting (dr) [4,5]. If dr is not well-defined
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or chosen in an arbitrary way then sample size
will also be arbitrary. Unfortunately there is little
guidance for selecting dr and any improvement in
either effectiveness or efficiency will be worth
detecting when the marginal cost of detecting such
a difference is excluded for the analysis.

The traditional power calculation does exclude
the marginal cost of sampling and implicitly
places an infinite value on the benefits of sample
information. This leads to either unbounded or
arbitrary sample sizes; consequently regulation
based on this calculation demands either infinite
or arbitrary amounts of information. In practice
the power calculation can be ‘reversed’ by select-
ing a sample size that is acceptable to the analyst
or sponsor and then solving for dr that provides
the specified a and b.

Second, the type of information demanded by
regulatory regimens is not directly relevant to the
decisions of ‘a formulary committee or similar
entity . . . [or in] the section of drugs for managed
care or other similar organisation’ [3]. Useful
information for decision-making should take the
form p [hypothesis�data] but the information pro-
vided by a traditional clinical trial takes the form
p [data�hypothesis] which by itself provides little
useful information to decision-makers. The issue
is analogous to measures of diagnostic accuracy
such as sensitivity and specificity which are only
useful when revising a prior probability of disease
to establish predictive values [6]. Almost all users
of the results of clinical research and many ana-
lysts wrongly interpret the p-value from a clinical
trial as p [hypotheis�data] rather then
p [data�hypothesis] [7]. This reflects the difficult
interpretation and questionable utility of the fre-
quentist approach [8]. Indeed it is only by taking
a Bayesian view that useful probability statements
such as ‘there is a probability of 0.8 that the net
benefit of intervention A is greater than the net
benefit of intervention B ’ can be made.

It is not surprising that most users and analysts
take an implicitly Bayesian view of probability
and interpret p [data�hypothesis] as p [hypothe-
sis�data]. However, this interpretation requires an
uninformative (and often improper) prior which is
no less subjective than one that contains informa-
tion. For example, when considering the approval
of a new pharmaceutical within an existing thera-
peutic class or the off-label use of an approved
drug for other indications or patient groups, the
notion that we have no prior information about

efficacy, safety and efficiency is simply not credi-
ble. In these circumstances the implicit assump-
tion of an information-less prior is not only
profligate and inefficient; it clearly has tangible
costs in terms of lives and life years forgone as
approval decisions are delayed.

Finally, any regulatory regimen that demands
the same standards of evidence in all circum-
stances and across all technologies irrespective of
any evidence already available, the size of the
patient population that could benefit from the
new technology, and the costs of gathering more
information simply cannot be efficient. These is-
sues seem to be recognized in the more recent
FDA legislation including a ‘fast track’ approval
in some circumstances [9], and a definition of
competent and reliable evidence which references
the Federal Trade Commission’s standards:

‘. . . a reasonable basis [for a claim] depends . . . on
a number of factors relevant to the benefits and costs
of substantiating a particular claim. These factors
include: the type of product, the consequences of a
false claim, the benefits of a truthful claim, the costs
of developing substantiation for the claim . . . ’ [10].

This standard of evidence requires explicit con-
sideration of the marginal benefits and costs of
acquiring additional information but no method
for estimating these costs and benefits has been
suggested. A Bayesian approach to the value of
information does provide such a method and a
framework which defines a claim as substantiated
when it is not efficient to gather any more
information.

EFFICIENT REGULATION

Bayesian approaches to the valuation of informa-
tion have been available for some time [11–14]
but have only recently been applied to the eco-
nomic evaluation of health care technologies [15–
17]. Information is valuable because it reduces the
expected costs of uncertainty surrounding a clini-
cal decision. The expected costs of uncertainty is
determined by the probability that a treatment
decision based on existing information will be
wrong and the consequences if the wrong decision
is made. The expected costs of uncertainty can
also be interpreted as the expected value of perfect
information (EVPI) since perfect information (an
infinite sample) can eliminate the possibility of
making the wrong decision. It is also the maxi-
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mum a decision-maker should be willing to pay
for additional evidence to inform this decision in
the future. If the EVPI exceeds the expected costs
of additional research then it is potentially cost-ef-
fective to demand more information to substanti-
ate a claim.

The EVPI is determined by the prior mean net
benefit of the new technology, the amount of
prior information available, and the value placed
on opportunity losses when they occur. Informa-
tion is non rival so the EVPI is also determined by
the size of the patient population who could
benefit from the new technology. Clearly the
value of information can vary substantially across
new technologies with different characteristics.
The EVPI can also be established for each uncer-
tain parameter in economic models of health care
technologies. This can be used to focus the de-
mands of regulatory authorities on getting more
precise estimates of particular variables which
may not necessarily require experimental design.

Observing an EVPI greater than the cost of
additional research provides only the necessary
but not sufficient condition for demanding more
experimental information to substantiate a claim.
It is necessary to estimate the benefits of sam-
pling, or the expected value of sample information
(EVSI) for the patient population, and the cost of
sample information including the additional treat-
ment and reporting cost. The difference between
the EVSI and sampling cost is the expected net
benefits of sampling (ENBS) or the societal pay-
off to proposed research. An estimate of the
ENBS for every feasible allocation of each sample
size is required to identify the optimal allocation
of trial entrants (where ENBS reaches a maximum
for a given sample size). The optimal sample size
for the trial is where ENBS reaches a maximum
(given optimal sample allocation). If the maxi-
mum ENBS is greater than the fixed costs of the
research then it will be efficient to demand addi-
tional experimental evidence at this technically
efficient scale and design.

The characteristics of four stylized numerical
examples are detailed in Table 1. These examples
can represent different technologies or the same
technology in different circumstances where: the
difference between Example 1 and 2 is that the
marginal costs of sampling for the experimental
and control group is higher in Example 1; the
difference between Example 2 and 3 is that prior
variance is greater in Example 3 (there is less prior

information available and more uncertainty); and
the difference between Example 3 and 4 is that the
population that can benefit from additional infor-
mation is higher in Example 4. The EVPI, ENBS
and optimal sample size for each example are
reported in Table 2. These examples demonstrate
that the value of information and optimal sample
size is determined by the characteristics of new
technologies and the monetary valuation of health
outcome (1/g).

Clearly the efficient scale and design of experi-
mental research will differ substantially across
technologies with different characteristics. Indeed
in some circumstances it will not be efficient to
acquire experimental information because the
fixed costs of research exceed the maximum
ENBS (see Example 1 in Table 2). In these cases
a claim can be substantiated on prior evidence
alone. In other circumstances very large clinical
trials, far in excess of the current regulatory de-
mands, will be efficient. What distinguishes the
classical/frequentist approach from the decision
theoretic is that in the former a decision rule and
sample size are selected to achieve a predeter-
mined a and b while the latter solves for a deci-
sion rule and sample size which meets an explicit
objective (maximize health gain for a given
budget).

CONCLUSION

Regulatory authorities should demand more evi-
dence for substantiation of a claim if the expected
benefits exceed the expected costs of additional
information. Efficient regulation would demand
more information for some new technologies as
compared to others and require different amounts
of information for the same technology in differ-
ent circumstances. The appropriate role of regula-
tory authorities should be to police the prior
information which is explicitly used in this type of
analysis and implicitly used in the classical ap-
proach (the US EPA already plays a similar role
in policing exposure and potency assumptions in
models of environmental hazards). Information is
non rival and a public good so regulatory author-
ities must also ensure that the disincentive of
being the first to develop a new technology where
there is little prior information and a large eligible
population is mitigated by flexible patent life.
This flexibility has already being used by the FDA

Copyright © 1999 John Wiley & Sons, Ltd. Health Econ. 8: 269–274 (1999)
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Table 1. Characteristics of stylized examples (different technologies or the same technology in different circumstances)

Example 2: good priorExample 1: good prior Example 3: poor prior Example 4: poor prior
information; high information; low information; lowinformation; low

marginal sampling cost; marginal sampling cost;marginal sampling cost;marginal sampling cost;
small patient population small patient population large patient populationsmall patient population

Incremental costa

$5000Prior mean $5000 $5000 $5000
$12 000 $12 000$12 000 $12 000Variance
$40 $40$14Prior variance $14

Incremental utilitya

0.2 0.20.2Prior mean 0.2
36Variance 36 3636
0.12Prior variance 0.045 0.045 0.12

$25 000Incremental CER $25 000 $25 000 $25 000
5000Patient population 100010001000

p.a.b

Marginal cost of samplingc

$6000 $6000$6000Experimental arm $7000
$1000Control arm $2000 $1000 $1000

a For simplicity the covariance between incremental costs and utilities is assumed to be zero.
b An effective life of 5 years is assumed for this new technology and the patient population is discounted at 6%.
c Marginal sampling costs include incremental costs for the experimental arm and marginal reporting costs for both experimental and control.



B
A

Y
E

SIA
N

A
P

P
R

O
A

C
H

E
S

T
O

T
H

E
V

A
L

U
E

O
F

IN
F

O
R

M
A

T
IO

N
273

C
opyright

©
1999

John
W

iley
&

Sons,
L

td.
H

ealth
E

con.
8:

269
–

274
(1999)

Table 2. EVPI, ENBS, optimal sample size and sample allocationa

Example 2: good priorExample 1: good prior Example 4: poor priorExample 3: poor prior
information; lowinformation; lowinformation; high information; low

marginal sampling cost; marginal sampling cost;marginal sampling cost; marginal sampling cost;
small patient population large patient populationsmall patient population small patient population

EVPI
$16 365 054 $81 825 268$9 242 5311/g b=$30,000 $9 242 531
$20 967 597 $104 837 9871/g=$50,000 $9 791 624 $9 791 624

Optimal sample size
580 17543981/g=$30 000 508

6091/g=$50 000 21290 744

Allocation to experimental
220 686145 1711/g=$30 000
290 8561/g=$50 000 0 201

Maximum ENBS
$7 602 926 $58 154 8741/g=$30 000 $1 205 135 $1 642 525
$8 856 924$303 118 $72 388 0881/g=$50 000 $0

a The analysis of the value of information and optimal sample allocation uses methods which have been outlined in Claxton [15].
b 1/g=monetary valuation of health outcome or shadow price of the budget constraint (slope of the loss function).
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to encourage pediatric clinical trials of new and
approved drugs [9]. The consequences of the exist-
ing arbitrary regulation will be distorted research
and development priorities, inappropriate ap-
proval decisions and less than optimal flow of
pharmacoeconomic information, all of which will
have tangible costs in terms of health gains for-
gone. These issues seem to be recognized by regu-
latory agencies and Bayesian decision theory
provides the practical tools to implement a more
rational approach to regulation.
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